Unsupervised Bayesian image segmentation using wavelet-domain hidden Markov models

نویسندگان

  • Xiaomu Song
  • Guoliang Fan
چکیده

In this paper, we study unsupervised image segmentation using wavelet-domain hidden Markov models (HMMs). We first review recent supervised Bayesian image segmentation algorithms using wavelet-domain HMMs. Then, a new unsupervised segmentation approach is developed by capturing the likelihood disparity of different texture features with respect to wavelet-domain HMMs. The K-mean clustering is used to convert the unsupervised segmentation problem into a self-supervised process by identifying the reliable training samples. The simulation results on synthetic mosaics and real images show that the proposed unsupervised segmentation algorithm can achieve high classification accuracy that is close to the supervised one.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Bayesian wavelet domain segmentation using a Potts-Markov random field modeling

This paper describes a new fully unsupervised image segmentation method based on a Bayesian approach and a Potts-Markov Random Field (PMRF) model that are performed in the wavelet domain. A Bayesian segmentation model, based on a PMRF in the direct domain, has already been successfully developed and tested in [23, 12]. This model performs a fully unsupervised segmentation, on images composed of...

متن کامل

Unsupervised Bayesian wavelet domain segmentation using Potts-Markov random field modeling

We describe a new fully unsupervised image segmentation method based on a Bayesian approach and a Potts-Markov random field (PMRF) model that are performed in the wavelet domain. A Bayesian segmentation model, based on a PMRF in the direct domain, has already been successfully developed and tested. This model performs a fully unsupervised segmentation, on images composed of homogeneous regions,...

متن کامل

A study of contextual modeling and texture characterization for multiscale Bayesian segmentation

In this paper, we demonstrate that multiscale Bayesian image segmentation can be enhanced by improving both contextual modeling and statistical texture characterization. Firstly, we show a joint multi-context and multiscale approach to achieve more robust contextual modeling by using multiple context models. Secondly, we study statistical texture characterization using wavelet-domain Hidden Mar...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

Unsupervised image segmentation via Markov trees and complex wavelets

The goal in image segmentation is to label pixels in an image based on the properties of each pixel and its surrounding region. Recently Content-Based Image Retrieval (CBIR) has emerged as an application area in which retrieval is attempted by trying to gain unsupervised access to the image semantics directly rather than via manual annotation. To this end, we present an unsupervised segmentatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003